CS 4300 Computer Graphics

Prof. Harriet Fell
Fall 2012
Lecture 26 - November 7, 2012

Topics

- Ray intersections with
- plane
- triangle
- quadrics
- Recursive Ray Tracing

More Ray-Tracing

Ray/Polygon Intersection

Ray/Triangle Intersection

Equation of a Plane

Given a point P_{0} on the plane and a normal to the plane \mathbf{N}.
(x, y, z) is on the plane if and only if $(\mathrm{x}-\mathrm{a}, \mathrm{y}-\mathrm{b}, \mathrm{z}-\mathrm{c}) \cdot \mathrm{N}=0$.
$\uparrow N=(A, B, C)$

Ray/Plane Intersection

$$
\begin{aligned}
& \quad P_{0}=\left(x_{0}, y_{0}, z_{0}\right) \\
& \text { Ray Equation }=y_{0}+t\left(y_{1}-y_{0}\right) \\
& A\left(x_{0}+t\left(x_{1}-x_{0}\right)\right)+B\left(y_{0}-z_{0}\right)
\end{aligned}
$$

Ray Equation

$$
x=x_{0}+t\left(x_{1}-x_{0}\right)
$$

$$
\mathrm{y}=\mathrm{y}_{0}+\mathrm{t}\left(\mathrm{y}_{1}-\mathrm{y}_{0}\right)
$$

$$
z=z_{0}+t\left(z_{1}-z_{0}\right)
$$

Solve for t. Find x, y, z.

Planes in Your Scenes

- Planes are specified by
- A, B, C, D or by \mathbf{N} and P
- Color and other coefficients are as for spheres
- To search for the nearest object, go through all the spheres and planes and find the smallest t.
- A plane will not be visible if the normal vector (A, B, C) points away from the light.
- or we see the back of the plane

Ray/Triangle Intersection

Using the Ray/Plane intersection:

- Given the three vertices of the triangle,
- Find \mathbf{N}, the normal to the plane containing the triangle.
- Use \mathbf{N} and one of the triangle vertices to describe the plane, i.e. Find A, B, C, and D.
- If the Ray intersects the Plane, find the intersection point and its β and γ.
- If $0 \leq \beta$ and $0 \leq \gamma$ and $\beta+\gamma \leq 1$, the Ray hits the Triangle.

Ray/Triangle Intersection

Using barycentric coordinates directly: (Shirley pp. 206-208) Solve

$$
e+t d=\mathbf{a}+\beta(\mathbf{b}-\mathbf{a})+\gamma(\mathbf{c}-\mathbf{a})
$$ for t, γ, and β.

The x, y, and z components give you 3 linear equations in 3 unknowns.
If $0 \leq t \leq 1$, the Ray hits the Plane.
If $0 \leq \beta$ and $0 \leq y$ and $\beta+\gamma \leq 1$, the Ray hits the Triangle.

Images with Planes and Polygons

Images with Planes and Polygons

Ray Box Intersection

Ray Box Intersection

http://courses.csusm.edu/cs697exz/ray box.htm

 or see Watt pages 21-22Box: minimum extent $\mathrm{Bl}=(\mathrm{xl}, \mathrm{yl}, \mathrm{zl})$ maximum extent $\mathrm{Bh}=(\mathrm{xh}, \mathrm{yh}, \mathrm{zh})$
Ray: $R 0=(x 0, y 0, z 0), R d=(x d, y d, z d)$ ray is $R 0+t R d$
Algorithm:

1. Set tnear $=-$ INFINITY, tfar $=+$ INFINITY
2. For the pair of X planes
3. if $\mathrm{zd}=0$, the ray is parallel to the planes so:

- if $\mathrm{x} 0<\mathrm{x} 1$ or $\mathrm{x} 0>\mathrm{xh}$ return FALSE (origin not between planes)

2. else the ray is not parallel to the planes, so calculate intersection distances of planes

- $\mathrm{t} 1=(\mathrm{xl}-\mathrm{x} 0) / \mathrm{xd}$ (time at which ray intersects minimum X plane)
- $\mathrm{t} 2=(\mathrm{xh}-\mathrm{x} 0) / \mathrm{xd} \quad$ (time at which ray intersects maximum X plane)
- if $\mathrm{t} 1>\mathrm{t} 2$, swap tl and t 2
- if $\mathrm{t} 1>$ tnear, set tnear $=\mathrm{t} 1$
- if $\mathrm{t} 2<\mathrm{tfar}$, set $\mathrm{tfar}=\mathrm{t} 2$
- if tnear > tfar, box is missed so return FALSE
- if tfar <0, box is behind ray so return FALSE

3. Repeat step 2 for Y , then Z
4. All tests were survived, so return TRUE

Quadric Surfaces

ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

elliptic cylinder

Quadric Surfaces

1-sheet hyperboloid

2-sheet hyperboloid

Quadric Surfaces

hyperbolic parabaloid

elliptic parabaloid

Quadric Surfaces

General Quadrics in General Position

Ray Quadric Intersection Quadratic Coefficients

```
\(A=a^{*} x d^{*} x d+b^{*} y d^{*} y d+c^{*} z d^{*} z d\)
    \(+2\left[d^{*} x d^{*} y d+e^{*} y d^{*} z d+f^{*} x d^{*} z d\right.\)
\(B=2^{*}\left[a^{*} x 0^{*} x d+b^{*} y 0^{*} y d+c^{*} z 0^{*} z d\right.\)
    \(+d^{*}\left(x 0^{*} y d+x d^{*} y 0\right)+e^{*}\left(y 0^{*} z d+y d^{*} z 0\right)+f^{*}\left(x 0^{*} z d+x d^{*} z 0\right)\)
    + g*xd + h*yd + j*zd]
\(C=a^{*} x 0^{*} x 0+b^{*} y 0^{*} y 0+c^{*} z 0^{*} z 0\)
    \(+2^{*}\left[d^{*} x 0^{*} y 0+e^{*} y 0^{*} z 0+f^{*} x 0^{*} z 0+g^{*} x 0+h^{*} y 0+j^{*} z 0\right]+k\)
```


Quadric Normals

$$
Q(x, y, z)=a x^{2}+b y^{2}+c z^{2}+2 d x y+2 e y z+2 f x z+2 g x+2 h y+2 j z+k
$$

$$
\begin{aligned}
& \frac{\partial Q}{\partial x}=2 a x+2 d y+2 f z+2 g=2(a x+d y+f z+g) \\
& \frac{\partial Q}{\partial y}=2 b y+2 d x+2 e z+2 h=2(b y+d x+e z+h) \\
& \frac{\partial Q}{\partial z}=2 c z+2 e y+2 f x+2 j=2(c z+e y+f x+j)
\end{aligned}
$$

$$
N=\left(\frac{\partial Q}{\partial x}, \frac{\partial Q}{\partial y}, \frac{\partial Q}{\partial z}\right)
$$

Normalize N and change its sign if necessary.

MyCylinders

Student Images

Student Images

