

CS 4300 Computer Graphics

Prof. Harriet Fell Fall 2012 Lecture 32 – November 19, 2012

Today's Topics

• Morphing

Morphing History

- *Morphing* is turning one image into another through a seamless transition.
- Early films used cross-fading picture of one actor or object to another.
- In 1985, <u>"Cry" by Godley and Crème</u>, parts of an image fade gradually to make a smother transition.
- Early-1990s computer techniques distorted one image as it faded into another.
 - Mark corresponding points and vectors on the "before" and "after" images used in the morph.
 - E.g. key points on the faces, such as the contour of the nose or location of an eye
 - Michael Jackson's "Black or White" (1991)

» <u>http://en.wikipedia.org/wiki/Morphing</u>

Morphing History

- 1992 Gryphon Software's "Morph" became available for Apple Macintosh.
- For high-end use, "Elastic Reality" (based on Morph Plus) became the de facto system of choice for films and earned two Academy Awards in 1996 for Scientific and Technical Achievement.
- Today many programs can automatically morph images that correspond closely enough with relatively little instruction from the user.
- Now morphing is used to do cross-fading.

Harriet George Harriet...

Feature Based Image Metamorphosis Thaddeus Beier and Shawn Neely 1992

- The morph process consists
 - warping two images so that they have the same "shape"
 - cross dissolving the resulting images
- cross-dissolving is simple
- warping an image is hard

Harriet & Mandrill

Harriet 276x293

Mandrill 256x256

Warping an Image

There are two ways to warp an image:

- forward mapping scan through source image pixel by pixel, and copy them to the appropriate place in the destination image.
 - some pixels in the destination might not get painted, and would have to be interpolated.
- reverse mapping go through the destination image pixel by pixel, and sample the correct pixel(s) from the source image.
 - every pixel in the destination image gets set to something appropriate.

Forward Mapping

Forward Mapping Harriet → Mandrill

November 25, 2012 College of Computer and Information Science, Northeastern University

Forward Mapping Mandrill → Harriet

Inverse Mapping

Inverse Mapping Mandrill → Harriet

November 25, 2012 College of Computer and Information Science, Northeastern University

Inverse Mapping Harriet → Mandrill

November 25, 2012 College of Computer and Information Science, Northeastern University

(harrietINV + mandrill)/2

November 28, 2012

College of Computer and Information Science, Northeastern University

Matching Points

Matching Ponts Rectangular Transforms

Halfway Blend

(1-t)lmage1 + (t)lmage2

T = .5

Caricatures Extreme Blends

t = 1.5

Harriet & Mandrill Matching Eyes

Match the endpoints of a line in the source with the endpoints of a line in the destination.

Harriet 276x293

Mandrill 256x256

Line Pair Map

The *line pair map* takes the source image to an image the same size as the destinations and take the line segment in the source to the line segment in the destination.

Finding *u* and *v*

u is the proportion of the distance from DP to DQ.

v is the distance to travel in the perpendicular direction.

November 28, 2012 College of Computer and Information Science, Northeastern University

linePairMap.m header

% linePairMap.m
% Scale image Source to one size DW, DH with line pair mapping function Dest = forwardMap(Source, DW, DH, SP, SQ, DP, DQ);
% Source is the source image
% DW is the destination width
% DH is the destination height
% SP, SQ are endpoints of a line segment in the Source [y, x]
% DP, DQ are endpoints of a line segment in the Dest [y, x]

linePairMap.m body

```
Dest = zeros(DH, DW,3); % rows x columns x RGB

SW = length(Source(1,:,1)); % source width

SH = length(Source(:,1,1)); % source height

for y= 1:DH

for x = 1:DW

u = ([x,y]-DP)*(DQ-DP)'/((DQ-DP)*(DQ-DP)');

v = ([x,y]-DP)*perp(DQ-DP)'/norm(DQ-DP);

SourcePoint = SP+u*(SQ-SP) + v*perp(SQ-SP)/norm(SQ-SP);

SourcePoint = max([1,1],min([SW,SH], SourcePoint));
```

```
Dest(y,x,:)=Source(round(SourcePoint(2)),round(SourcePoint(1)),:);
end;
end;
```

November 28, 2012 College of Computer and Information Science, Northeastern University

linePairMap.m extras

% display the image figure, image(Dest/255,'CDataMapping','scaled'); axis equal; title('line pair map'); xlim([1,DW]); ylim([1,DH]);

function Vperp = perp(V)Vperp = [V(2), -V(1)];

Line Pair Map

November 28, 2012 College of Computer and Information Science, Northeastern University

26

Line Pair Blend

November 28, 2012

College of Computer and Information Science, Northeastern University

Line Pair Map 2

November 28, 2012 College of Computer and Information Science, Northeastern University

Line Pair Blend 2

November 28, 2012 College of Computer and Information Science, Northeastern University

Weighted Blends

Multiple Line Pairs

Find Xi' for the ith pair of lines.

Di = Xi' - X

Use a weighted average of the Di.

Weight is determined by the distance from X to the line.

weight =
$$\left(\frac{length^p}{(a+dist)}\right)^b$$

length = length of the line dist is the distance from the pixel to the line a, b, and p are used to change the relative effect of the lines.

Add average displacement to X to determine X⁴.

November 28, 2012 College of Computer and Information Science, Northeastern University

Let's Morph

MorphX